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A stress relaxation mechanism which entails circumferential cracking around a spherical 
particle is presented. In a dispersion-strengthened system, composed of spherical particles 
of different elastic and fracture properties and a matrix of lower thermal expansion, the 
location and extent of crack propagation is determined by the relative magnitude of 
elastic and fracture properties of the matrix and the particulate phase. A simple energy 
balance criteria is adopted to describe the extent of post-initiation crack propagation and 
to show the relationship between the initial flaw size and the arrested crack length. The 
major implications of the analysis are discussed in the light of the reported experimental 
data. 

1. Introduction 
It has been recognized that the incorporation of  
particles of  different thermoelastic and fracture 
properties into the brittle matrix may, under 
certain conditions, lead to significant strengthen- 
ing of  the resultant composite. This has led to the 
synthesis of  a number of  dispersion-strengthened 
composites with various combinations of  matrix 
and particulate phase. Experiments have shown 
that when suitable choice of  matrix and second 
phase is made, a substantial strengthening was 
achieved. So far, the extent of  strengthening or 
weakening effects have normally been related to 
the nature and level of  internal stresses generated 
as a result of  the thermal expansion coefficient 
difference of  the phases involved. For example, it 
has been noticed that the strengthening is achieved 
only when 2xc~ (= c~ m -- c~p, c~ m and c~p being the 
thermal expansion coefficients of  the matrix and 
particle, respectively) approaches zero, or exhibits 
small negative values. For the systems in this 
category, Tummala and Friedberg [1] observed 

strengthening for a glass-ZrO2 system of  Ac~ = 
- -2 .9  but only when "rounded" particles were 
incorporated. Similar strengthening was observed 
in a glass-alumina and glass-zirconia composites 
[2] exhibiting negative 2~c~ values. Some strength- 
ening has also been observed in a glass-tungsten 
system of  near zero 2xc~ [3]. 

In other instances, it has been found that, if 
the negative value of  kc~ is too large, the thermo- 
elastic stress induces decohesion at the interface 
or microcracking either in the particle or in the 
matrix. This has been encountered in a glass- 
nickel system for Ac~ = - -  12 [4, 5]. Weakening 
has also been observed in an SiaN4-SiC system 
of negative Ace [6]. 

The next system of interest is the glass- 
thoria composite in which some form of strength- 
ening has been observed for a small negative 
value of  2xc~ [7]. 

The object of  the present paper is to identify 
factors controlling the microcracking condition 
and the location of  crack initiation in two-phase 
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systems in the presence of small tensile hydro- 
static stress in the particle developed as a result 
of the thermal expansion difference. For the 
present analysis a model system is selected which 
consists of spherical particles dispersed in a brittle 
matrix of lower thermal expansion (negative As). 

2. Microcracking condition 
For elastically isotropic brittle matrix-ductile 
particle composites (Em = Ep, v m = Up), it has 
been shown that the location of microcrack 
initiation and, therefore, stress relaxation process 
is governed by the interfacial properties and the 
strength of the particulate and matrix phases [8]. 
Bearing in mind the fact that most of dispersion- 
strengthed systems consist of a brittle matrix 
and spherical particles of different elastic proper- 
ties, it is of interest to examine the effect that 
such particles have on crack-propagation behaviour 
and overall strength of the resultant composite. 
Thus, the following analysis is concerned with the 
mechanism of stress relaxation and post-initiation 
crack propagation in a dispersed composite con- 
taining spherical particles of different elastic 
properties and the linear thermal expansion 
coefficient higher than that of the matrix. The 
system is assumed to contain pre-existing cracks 
of circular shape, uniformly distributed and non- 
interacting (Fig. I). Furthermore, it is assumed 
that crack extension under differential thermal 
contraction occurs instantaneously and corresponds 
to the "fixed grip" condition [9]. According to 
Berry [10], the extension of cracks not only 
lowers the Young's modulus but also relaxes the 
residual stress. The effect of cracks on Young's 
modulus is given by the expression [1 I] 

16(1 -- v2)XC3] -1 
E = Eo 1+  9 ( l ~ u )  l (1) 

where Eo is the Young's modulus of crack-free 

dp>d m Ep> E m 

Figure 1 Schematic illustration of a particle embedded in 
a matrix of lower thermal expansion. 

material, C is the crack length, N is the number 
of cracks per unit volume, and v is the Poisson's 
ratio. 

On cooling from high temperature, crack exten- 
sion may occur in the particle, at the particle- 
matrix interface or in the matrix, but for the 
sake of the present analysis, it will be assumed 
that cracks occur first in the particle. The energy 
per unit volume of a spherical particle subjected 
to uniform thermoelastic stress is [7] : 

Wp = 3(Ac~AT)2(1 -- 2uv) 

x 2Ep 2Em ~Ep ] ) (2) 

If N cracks per unit volume of a particle are 
formed on cracking, the energy per unit volume 
of the particle is expressed as the sum of the 
elastic energy stored and the surface energy 
of cracks: 

3(I - 2~,p) (Ac~zXT) 2 
W t =  

2Eop 

x [1 + 16(1--v~)NC3]~-I-~ ] [-2-~Zt 1 +Vm 

1--2up [ 16(1--u2)NCa]I-2 
+ 1 +  

Eoo j) 

+ 2"),pNTrC 2 (3) 

where Eop and Eom are the Young's moduli of the 
crack-free particle and matrix, respectively, and 
7p is the fracture surface energy of the particle. 

According to Griffith's theory, the crack 
extension occurs when the following condition 
is fulfilled : 

dWt/dC = 0 (4) 

On substituting Equation 3 into Equation 4 and 
differentiating, gives the expression for the mini- 
mum differential strain required for crack exten- 
tion: 

[ "/pEopTr ]]/2{l+Pm2Eom 
Zx~zXT = [ 2 0 - ~ ) C l  

]--2Pp [ 16(1 ~)JVC3]) 3/2 
+ Eop 1 + 9(1 -- 2up) ] 

(1 
x [?To~ Eo~ 1 + 9(1-2v~) J) 

(5) 
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Figure 2 Critical differential strain required to initiate 
crack propagation in the particle as a function of initial 
crack length and fracture toughness of the second phase. 

If, however, cracking occurs at the particle- 
matrix interface, certain parameters in Equation 5 
must be corrected to include the effect of bound- 
ary phase. 

For short initial cracks, [ 1 6 ( I -  @ ) N C 3 / 9 ( 1 -  

2 up)] ~ 1, Equation 5 simplifies to: 

12,]3  
A a A T =  2(1 -~ ,~ )C  L2Eom + Eop 

1 + Pm 1 -- 2Vp] -1/2 

X [2Eom ~op  - (6) 

Fig. 2 illustrates the variation of minimum differ- 
ential strain required for crack initiation with 
initial crack length for the fracture energy indi- 
cated. 

It is evident from Equation 6 that the differ- 
ential strain required for crack initiation is related 
to the length of pre-existing flaw (C) and must, 
therefore, be a function of strength of particulate 
phase. For a circular crack of length 2C, the criti- 
cal fracture stress, Ofp, is [12] 

alp = ['YpEovn/2C(1 -- .2,~1/2 Up) 1 (7) 

Combining Equations 6 and 7 gives (for short 
initial crack length): 

1 +  P m 1 -- 2Up] 3/2 
AaAT = 0fp [2Eom + Eop 

3 

[1 + 1 - -  1-'/2 
x [2Eom E 2  ] (8) 

Equation 8 predicts that the critical mismatch 
strain required to initiate particle cracks is directly 
related to the strength level of the particle under 
pure hydrostatic tension. Under such stress, the 
particle will behave as an ideal linear elastic 
material because the hydrostatic nature of the 
stress within the particle favours cleavage crack 
initiation and suppresses plastic deformation [8]. 

In developing Equation 8, it has been assumed 
that crack extension occurs in the particle only. 
However, the location of crack extension depends 
on the relative magnitude of critical mismatch 
strain of matrix and particle as predicted by 
Equation 8. For ideally linear elastic material, the 
critical fracture strain of the matrix under uniaxial 
tension is 

Gfm 
e m - (9) 

Em 

where Ofm is the fracture stress, and E m is the 
Young's modulus of the matrix. 

Clearly, particle, not matrix cracking will occur 
only if the critical fracture strain of the matrix 
is larger than the critical fracture strain of the 
particle, i.e. 

O-fm > ~ (10) 
Eom O'fp 2EomEop 

or 
r 

Ofm ~ Ofp 2Eop (11) 
where 

/[Eop( 1 + Prn) -[- 2Eom(1 --2Pp)]3 t I/2 

If  Equation 1 1 is not satisfied, the first micro- 
cracks will appear in the matrix material, thereby 
forming so-called circumferential cracks (Fig. 3). 
As Equation 11 shows, the overall strength of the 
composite is governed by the strength and elastic 
properties of the matrix and particle. The con- 
dition of microcrack extension as defined by 
Equation 1 1 is graphically illustrated in Fig. 4. 

So far, discussion has been concentrated on 
the condition of crack initiation. After initiation, 
the extent of crack propagation before arrest is 
governed by the kinetic energy of the crack. 
Owing to kinetic energy, the crack will propagate 
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Figure 3 Circumferential microcrack formation around a 
spherical particle subjected to tensile thermoelastic stress 
(negative AxcO: (a) partial circumferential cracking; (b) 
complete circumferential cracking. 

until the potential energy released equals the total 
surface fracture energy of cracks. The condition 
of crack arrest at some final crack length, Cf, can 
be obtained from the expression [8 -11] :  

{[ 3(A~T)2(1 2vp) 1+ 
2Lop 1 

x [ 16(1--vg)NC3l/-2 1 + u r n +  - 2 p p  1 +  
[ 2Eom Lop 9(1 -- 2Up) ]J 

[ 16(  / ,-2 o 
-- 1 + 9 ( 1 - - 2 v v )  ] [ 2 E o m  + Lop 

x [I+16(I___u~)NC# ] -2} 9(1-2vp) ]} = 2~rTpN(C~-C2) 
(12) 

where C is the initial crack length. For short initial 
crack length, Cf >> C, the final crack length is ob- 
tained by substituting Equation 5 into Equation 12: 

{ " 1) 
1 +  1 -- 2Up 1/2 

Cf = 3(1- -2Vp)  [2Eom + Lop 

1 + /3 m 1 -- 2vp -1/2 

(13) 

Equation 13 indicates that the extent of  crack 
propagation in the particulate phase is a function 
of  the elastic properties of  the materials, crack 
density and the initial crack length. It  should be 
noted, however, that if cracking occurs in the 
particle, the size of  a final crack length will event- 
ually be limited by the particle size. 

I f  C~ is assumed to be the largest crack in the 
specimen, then the strength of  the composite can 
be obtained by combining Equations 7 and 13 
(for C = C~): 
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Figure 4 The effect of elastic properties and strength of 
the matrix and particulate phase on circumferential 
cracking. 
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. _E~lr ]1/2 
cr~ = 2(1--v2)]  

{8(1 v 2 N [ l + v m  1 - - 2 v v  i/4 
X 

( 1 -- 2vp 
x [3(1 -- 2vp) [2Eom (14) 

where 7, E and v represent the fracture surface 
energy, Young's modulus and Poisson's ratio, 
respectively, either of  the particle, matrix or 
boundary phase, depending on whether the crack 
extension occurs in the particle, in the matrix or 
at the par t ic le-matr ix  interface. I f  cracking occurs 
at the par t ic le-matr ix  interface or in the matrix, 
experiments have shown that such cracks finally 
attain circumferential or arc-shaped form as 
shown in Fig. 3. 

Specifically, Equation 14 applies to the cases 
where the size of  a circumferential crack is smaller 
than the interparticle spacing, i.e. when the inter- 
action between the crack tip stress field and the 
thermoelastic stress field of neighbouring particles 
is negligible. For a small mean free path of second- 
phase composites where the interaction of  neigh- 
bouring stress fields is significant, the strength of  
the composite is not determined only by the 
energetics of  the process, but also by the inter- 



particle spacing. The strength behaviour of dis- 
persed composites with high volume fraction of 
the second phase has been treated by Hasselman 
and Fulrath [4] and will not be considered here. 

3. Discussion 
From the solution of thermoelastic stress concen- 
tration around a spherical particle embedded in a 
brittle matrix of lower thermal expansion, it is 
known that the tangential component of the 
stress acts to close all radial cracks emanating from 
the particle-matrix interface [13]. The radial 
component, on the other hand, tends to open 
circumferential cracks located either in the matrix 
or in the particle. As defined by Equation 11, the 
location of cracks responsible for fracture of the 
dispersed composite is determined by the strength 
level and elastic constants of the particle and 
matrix phases, as illustrated in Fig. 4. It is evident 
from Fig. 4 that in two-phase systems where both 
phases are of comparable strength, the particle 
cracking will occur when the elastic modulus of 
the particle is appreciably higher than that of 
matrix phase. When Equation l l  is applied to a 
well-studied glass thoria system [7], on substi- 
tuting pertinent values for Ep = 2 5  x 10 4 MPa, 
Up=0.275,  E m = 7 X  104MPa and Um=0.20,  
it shows that to avoid matrix cracking, the glass 
matrix must possess a strength greater than 90% 
of the strength of the thoria particle. The mea- 
sured strength of thoria is approximately 97 MPa 
[14], whereas the strength of glass is 48 to 
100MPa [14]. From Equation l l  it follows 
that, in order to avoid matrix cracking in a glass- 
thoria composite, the tensile strength of the 
glass must be in excess of 86 MPa. 

If, however, instead of thoria, alumina particles 
with an average tensile strength of 250 MPa [14] 
and a Young's modulus Ep = 42 x 104 MPa, are 
incorporated in a glass matrix of the same elastic 
properties, the strength of the glass matrix should 
be in excess of 215 MPa in order to suppress its 
cracking. 

Similarly, when other crystalline particles of 
higher strength, such as tungsten, TiO2 and 
ZrO2, are dispersed in a glass matrix of lower 
thermal expansion, very large differential strains 
are required to induce particle cracking. However, 
if lower strength particles are incorporated in a 
higher strength matrix, such as SiC dispersed in 
Si3N 4 matrix, differential strains of the order 

of 0.002 26 are required before cracks are initiated 
in the SiC particle. The critical fracture strain of 
Si3N4 under uniaxial tension is approximately 
0.001 33, which is much smaller than the critical 
differential strain required for crack extension in 
the SiC particle. Although the tensile strength of 
SiC (Ofp = 310 MPa) is significantly smaller than 
the tensile strength of Si3N4 matrix (afro = 
410MPa) [14], particle cracking is not likely 
to occur in this composite. 

The above results indicate that, in a majority 
of conventionally made composites, microscopic 
fracture initiates at matrix cracks and the matrix 
phase is the phase that controls the overall strength 
of the system. The incorporation of high-strength 
particles in a lower strength matrix does not 
necessarily lead to significant strengthening of 
the resultant composite. Noticeable strengthening 
can be achieved in a residual stress-free matrix 
when the volume fraction of the dispersed phase 
is sufficiently high to cause reduction of pre- 
existing crack length [4]. It follows, therefore, 
that, for a low volume fraction of second-phase 
composites, in which the interparticle spacing 
is larger than the inherent flaw size of the matrix, 
the presence of the dispersed phase is expected 
to have no effect on the composite strength. A 
typical example of this is found in a glass-alumina 
system in which no volume fraction effect was 
observed up to the point when interpartfcle 
spacing becomes comparable to the inherent flaw 
size of the matrix [4]. 

As shown by Equations 6 and 8, crack extension 
occurs when a critical strain for fracture initiation 
is reached. The location of crack extension is 
determined by the strength and the elastic proper- 
ties of the phases involved. If  cracking occurs 
within the particle, cracks will have a circular 
shape and will extend until their length reaches 
the particle diameter. The strength of such a 
composite is expected to be governed by the 
particle size, provided that the particle size is 
lower than the pre-existing flaw size responsible 
for fracture. When cracking occurs at the particle- 
matrix interface, or in the matrix, the length of 
an arrested crack is not limited by the particle 
diameter, but owing to its circumferential form 
its maximum length cannot exceed the particle 
circumference by any great amount. In such a 
case, the microscopic fracture is expected to start 
from "pseudo" pores generated by circumferential 
cracking, and the strength of the composite should 
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obey a modified Griffith equation.* A typical 
example of this is found in a glass-thoria system 
of large negative As values [7]. Based on this 
consideration, a logical conclusion would be that, 
if a brittle matrix contains spherical particles with 
a maximum diameter smaller than the pre-existing 
flaw size of the matrix, the matrix will be the 
phase that controls the overall strength of the 
composite. 

An important consequence that can be inferred 
from the present analysis is that, in a composite 
of negative As, the size of the particulate phase is 
more important than the magnitude of the residual 
stress itself, because the residual stress will be 
relaxed during crack extension, leaving "pseudo" 
pores which normally serve as fracture precursors. 
From the strengthening point of view, the most 
advantageous composite is that consisting of a 
brittle matrix of lower thermal expansion and 
uniformly distributed spherical particles of sizes 
smaller than the pre-existing flaw size of the 
matrix. 

Perhaps the most significant support for the 
stress relaxation concept advanced in the previous 
paper [8] and extended in the present work, may 
be found in the composites in which the residual 
stress is many times higher than both the matrix 
and the particle strength. Such composites should 
exhibit no strength and are expected to fracture 
on cooling from the fabrication temperature. The 
fact that these composites possess considerable 
residual strength, serves as an indication that the 
stress relaxation mechanism, occurring simultan- 
eously with crack extension, must be present. 
The significance of the residual stress relaxation 
phenomenon in strengthening brittle ceramics 
has been investigated by Tree et al. [15]. 

Clearly, in the composites in which the residual 
stress remains unrelaxed, the effect of these 
stresses must be included in the equation for 
strength [16]. 

4. Conclusions 
The location of crack extension and arrest con- 
ditions within a well-bonded spherical particle of 
different elastic properties dispersed in a brittle 

matrix of lower thermal expansion, can be pre- 
dicted using a simple energy balance criteria. 
Crack extension, followed by the residual stress 
relaxation, can occur in the particle, at the particle- 
matrix interface or in the matrix depending on 
the interfacial properties, the tensile strength of 
particulate and matrix phase and on their elastic 
constants. The prerequisite for effective strength- 
ening of the brittle matrix by incorporating 
spherical particle of different elastic properties 
and a higher thermal expansion than the matrix, 
is that the particles have a higher strength and a 
diameter smaller than the pre-existing flaw size 
of the matrix. Thus, incorporation of high-strength 
particles in a low-strength matrix does not auto- 
matically lead to the expected strengthening of 
the resultant composite. 
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*The modificat ion is required here because fracture occurs from pores and not  from inherently sharp cracks. 
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